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Big Data, Small Bugs:
Modeling Midwestern Aphid Population Dynamics with Varimax and Poisson Regression

Introduction

Aphids (members of the insect superfamily Aphidoidea) are soft-bodied sucking insects
which feed on the sap of a wide variety of agricultural crops, causing reduced plant vigor,
stunting, and deformed plant parts. They are also well known as disease vectors for many crops,
as well as integral components of many ecosystems as both predators and prey. For example, the
invasive soybean aphid was first discovered in the U.S. in 2000, but by 2009 had already spread
throughout the Midwest and Canada, quickly becoming one of the most devastating invasive
insect pests on soybean plants (Lago-Kutz, et al., 2020). Understanding these rapid changes in
aphid population serves two main purposes: aiding human agriculture, and improving our
understanding of the ecosystems within which we exist.

For our project, we chose to examine aphid abundance across the Midwest as it
corresponds with  environmental factors as well as crop presence. We combined data from the
soybean aphid suction trap network, crop data from the USDA’s National Agricultural Statistics
Service CropScape project, and weather data from NOAA’s Physical Sciences Laboratory’s
NCEP-DOE Reanalysis 2. We endeavored to use unsupervised learning, namely Varimax
rotation of Principal Component Analysis (PCA), to improve accounting of the environmental
factors responsible for aphid population dynamics. We predicted that, after controlling for
weather factors, crop monocultures would be associated with lower aphid diversity, with
implications for sustainable, effective, and minimally destructive agriculture.

Data

Our data on aphid abundance and diversity was shared with us by researchers in Groves
Lab at UW-Madison who helped establish a suction trap network: a network of traps throughout
the U.S. which catch insects flying overhead. The aphids were collected weekly from 2005
through 2018 from 49 sites throughout the Midwest, with a total of 263 aphid species recorded.
Each row of our data represented one weekly collection at each trap site, with each species
identified in a different row, along with the count of each species. To clean our data, we pivoted
the table so that the columns listed each species and the values showed the counts; this way we
had each row represent one single collection point (Lago-Kutz, et al., 2020).



Our crop data was obtained from the National Agricultural Statistics Service or NASS’s
CropScape service, which provides annual crop data for the continental United States in raster
format, making use of moderate resolution satellite imagery to identify crops (CropScape). The
attributes of the raster files include the name of the crop, pixel_count, acreage, and value
(percentage of an area) of each crop. We used the landscapemetrics package to measure the
vegetation from a 50 km circle around each Aphid trap site (Landscapemetrics), and joined this
to our data. Some sites did not have crop data available for particular years, sometimes due to
cloud cover, sometimes for unclear reasons.

Our weather data came from the NOAA’s Physical Sciences Laboratory’s NCEP/NCAR
Reanalysis 2 Project, which fills in gaps in actual measured weather using weather models
(Gleason). This dataset consists of daily spatial weather measurements including wind vectors,
air temperature, soil temperature, precipitation, humidity, cloud cover, and more . We used this
daily weather data to compute weekly minimums, maximums, and averages as well as
cumulative variables where appropriate (e.g. cumulative ‘degree days,’ precipitation, and wind).
We read and cleaned this data using the R-packages ‘Raster’ and ‘Tidyverse.’

We have not included our original weather data, as the data is multiple gigabytes, spread
out over many files, and accessing and computing measurements from each file requires several
hours of computation. However, the data is publicly available, and our data-cleaning code is
available upon request.

Methods

After combining our aphid data with agricultural and weather data, and removing
observations without crop data, our design matrix measured about 9,000 rows by 130 columns.
We used Varimax rotation of PCA to reduce the dimensionality of our design matrix, in service
of creating models for interpretation and prediction. Based on analysis of our design matrix’s
eigenvectors, we decided to use 14 principal components (PCs) as initial predictors.

Certain of our principal components (namely PC’s 1, 2, 3, 6, 13) represent weekly
weather conditions. Imagining that the previous week’s weather might be related to the current
week’s aphid population, we included the previous week’s values for these PCs as additional
predictors, and removed observations lacking a previous week (492 observations, with average
measured diversity of 6.16).



(See appendix A for principal component histograms and interpretation)

We then used Poisson regression to predict the rate of observed aphid diversity at capture
sites in the Midwest. We constructed two models; a parsimonious but statistically flawed model
for interpretation, and a (slightly less flawed) predictive model for forecasting. In our predictive
model, dispersion was calculated to be 1.31, which we felt was close enough to 1 to that our
assumption of for Poisson regression was reasonable.λ = µ = σ²

We started with a full model, including all PC’s, previous week PC’s where appropriate,
and interaction effects. We observed a quadratic trend in residuals, and so expanded our model to
include squares of PC’s, which improved our model fit. At each stage we compared models using
Chi-Squared tests to ensure that our newer, larger model actually accounted for more of the
variation seen in the data (see appendix B for model assessment, including residual plots and
analysis).

So that we could meaningfully compare regression coefficients, we standardized all
predictors prior to regression. Finally, we removed four outliers with standardized deviance
residuals > 6.



Results

In our model for interpretation, where predictors were standardized to allow comparison,
significant predictors (p-values all ~0) most associated with aphid diversity included PC3
(cumulative weather, B̂: 1.4), PC4 (northern polyculture 1,  B̂: 1.15), PC9 (northern polyculture
2, B̂: 0.44), and PC1 (hot vs cold, B̂: 0.29).

Surprisingly, in this model, southern polyculture (PC7, B̂: -0.40) and fruit polyculture
(PC11, B̂: -0.38) were negatively associated with aphid diversity (p-val ~0). Additionally, wind
from the south (PC13, B̂: -0.91), which we understood to carry aphids from warmer southern
fields into northern fields in the spring, was highly significant (p-value ~0), but was the predictor
most strongly associated with a lack of aphid diversity. Water/forest (PC14, B̂: -0.63) was the
next predictor most strongly associated with a lack of aphid diversity, again surprisingly. Each of
these factors, considered by itself, was correlated with an increase in aphid diversity, but when
considered with all other factors, each was associated with lower diversity.

We were also interested to note that one form of development measured in our crop data
was significantly associated with an increase in aphid diversity (‘development 1’, PC5, p-val ~0,
B̂: 0.11), while another form of development was also significant, but associated with a decrease
in diversity (‘development 2’, PC10, p-val ~0, B̂: -0.09).



Our predictive model is more difficult to interpret, but among significant predictors (p <
0.01) with the 15 largest B̂ values, 14 out of 15 are either directly a northern polyculture
principle component, or an interaction involving one or more northern polyculture PC’s, again
suggesting northern midwestern polyculture’s close association with aphid diversity.

Our predictive model provides less in terms of understanding, but could allow a farmer to
predict with a reasonable degree of accuracy the degree of aphid biodiversity likely to be found
in their field at a given point in time, based on surrounding crop data and weather data from the
season, and appears fairly able to predict mean aphid diversity under given conditions (Model
analysis in Appendix B).

Conclusion

We hypothesized initially that polycultures would be associated with greater aphid
diversity, and monocultures with lower aphid diversity. We found strong evidence that northern
polycultures in particular are associated with aphid diversity (see Results). We hypothesized that
aphid populations might be reflective of broader insect ecosystem health, with diverse systems of
agriculture associated with aphid diversity across the board.

In reality, aphid population dynamics appear more complicated, with several polycultures
(southern, fruit) observed to have a significant negative association with aphid diversity after



accounting for weather and crop data. We imagined that wilderness environments would be
associated with higher aphid diversity, whereas the opposite was true, while some types of
human development were associated with higher diversity.

Additionally, what we understand to be aphids’ main mode of transportation (wind
moving north from the American South) was strongly associated with lower aphid diversity. This
suggests to us that aphids often migrate from the South in communities of low diversity,
swarming en masse to and from resources, rather than forming stable ecosystems that remain in
place. Taken as a whole, our findings suggest that aphids are more closely intertwined with
human patterns of agriculture and settlement, and in less predictable ways, than we initially
imagined.

Our initial hypothesis was largely incorrect, but our findings—that outside of the
northern Midwest, aphids often move in waves of relatively few species— reinforced the
importance of being able to model and predict aphid population dynamics. Our goal in this paper
was to investigate patterns of aphid diversity, but the same modeling techniques could be applied
to predicting counts of specific aphid pests.

Our analysis has a number of limitations, including its fairly limited scope. We only
examined aphid diversity, which has a limited utility compared to modeling surges in aphid pest
populations. Additionally, our weather data came from a fairly low-resolution source. With more
time and computation resources, a more granular analysis could be performed. Finally, with
further data wrangling and creative modeling, our predictive model could be fit more accurately
than its current state.

We remain interested in extending our modeling approach to investigate population
dynamics among specific aphid pest species, particularly well-known pests including the
soybean, bean, cabbage, corn leaf, green peach, potato, melon, and pea aphids. We hope this type
of further investigation could be useful to farmers, and help reduce the use of insecticides to only
the most necessary and effective applications.

Shiny @ runGitHub( "Aphids", "mcnugg3t")
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Appendix A: Varimax Result Interpretation

Varimax Principal Component Load Histograms

Interpretation:
(Contrasts in red)
PC1 - ‘hot vs cold’ - temperature, humidity vs wind from north or east, wind speed, froze
PC2 - ‘moisture vs evaporation’ - precipitation, soil water, clouds vs sun, evaporation
PC3  - ‘time’ - week, day of year, cumulative wind and precipitation
PC4  - ‘northern polyculture 1’ - (% land) oats, clover/windflowers, barley, mixed forest, peas
PC5  - ‘development 1’ - (% land) developed low, medium, and high intensity, developed open
PC6 - ‘east vs west environment’ - Lat, spring wheat, wetlands, wind from E vs Lon,
deciduous, rain
PC7 - ‘southern polyculture’ - (% land) cotton, rice, soy + cotton, watermelon
PC8 - ‘spelt polyculture’ - (% land) sugar beets, beans spelt, dry beans, cucumbers, winter
wheat, Lon
PC9  - ‘northern polyculture 2’ - (% land) potatoes, evergreen, carrots, shrubland, christmas
trees
PC10  - ‘development 2’ - (% land) non-agricultural undefined, developed, forest, water
PC11 - ‘fruit polyculture’ - (% land) cherries, grapes, blueberries, apples, alfalfa, apples
PC12  - barren polyculture’ - (% land) squash, barren, peppers, durum, sweet corn, cranberries
PC13 - ‘wind from south / west’- wind from south (that week), wind speed, evaporation, wind
from west
PC14 - ‘water / forest’ - (% land) open water, woody weblands, forest, evergreen



Appendix B: Model Assessment
Poisson Regression Residuals

Residuals vs fitted plots show some signs of heteroscedasticity, as well as a non-linear
relationship, which challenges our model assumptions. However, we were unable to fully resolve
either of these issues with transformations or addition of polynomial terms.

Log response vs Predictors:

We observe that our assumption of linearity through the link function (Log) is not entirely valid,
and that each predictor (PC) has ‘lumps’ of data, especially around 0.


